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Abstract - Lsing a non-lll1ear theory. the defleclion of" pre,lrL'lchcd circular membrane subjected
to ponding pressure Is analyzed. The analysIs mav "ene a"" Ivplcal example of those studies where
linear theories are not admlsslhle for ohtall1Jng proper resp,)l1SC" hy an elastic system. A modified
iteration technique which yields fast convergence Is pre"ented to simplify the solution effort. Four
cases which are linked to the four ditferent levels of prohlem-solv mg are examined and compared
A better understanding of the non-Imear heh,n ",r "I' a 1'1','''1 retched circular membrane is reached,

I:\TRODlC1IO:\

In a recent paper, Kerr and Coffin (1990) studied the ronding deflection of a membrane
strip. They found that the non-linear homogeneous governing equation for the membrane
strip has a bifurcated solution when the load parameter is relatively large. and that the first
eigenvalue of the linear analysis determines merely the hifurcation point. Based on this
knowledge. it is seen that deflection of the system must not only exiSI beyond the bifurcation
point, but it also grows with an increase of the load parameter. Thus. the analysis shed
light on the matter, even though the ponding system discussed is of the simplest form
(membrane "strip"),

The current paper presents a non-linear analysis of the deflection of a prestretched
circular membrane subjected to the weight of a liq uid filling the space created by the
deflection of the memhrane (Fig, I), Hence. the pressure applied on the prestretched circular
membrane depends on the deflection of the memhrane, Prestretched circular membranes
have many practical applications: thin films such as silicon nitride membranes are used in
the electronics industry as well as other industries. but the mechanical properties of such
membranes have not heen studied in detail.

Also presented herein is a modified iteration technique which can yield approximate
but accurate solutions for the two coupled non-linear differential equations for prestretched
membranes. The modified iteration technique has the advantages of simplicity and effec­
tiveness. making it well suited for practical usage (Li u. 1984). As a more general analysis.
the weight of the membrane itself, which must have some intluence on the examined ponding
deflection, is incorporated into the treatment. and the modification introduced by the
membrane weight is also explored. giving a more realiqic picture of the ponding system,
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Fig. I. A prest retched circular membrane subject to liquid load.

MATHEMATICAL FORMULATION OF THE PROBLEM

Figure I is a schematic diagram of a circular elastic membrane under a ponding load.
It is assumed that the membrane has been prestretched by an initial tension To (force per
unit length). Let the radius of the membrane be a, and the thickness, t. We denote Young's
modulus and Poisson's ratio for the membrane material as E and v. To fit the membrane
geometry, a cylindrical coordinate system (I', e, .::) is adopted as shown.

Due to the axial symmetry of the membrane deflection, only two components of
displacement, i.e. radial displacement 11(1') and axial displacement (deflection) w(r), exist
and are independent of the circumferential coordinate e.

The existing membrane strain components (Timoshenko and Woinowsky-Krieger,
1959 ; Chia, 1980) are:

I:, = du + ~ (~\2·)2
dl' 2 dr

11
Eli =-­

I'

(la)

(1b)

among which B, is non-linearly linked to the possibly large deflection w. Using Hooke's law
and taking into account the initial tension. the membrane internal forces can be expressed
as

T,=To+f,

where

(2)

f, = (3)

_ Er
T" =--;(£0 + VB,.).

1-1"

The vertical load per unit area on the membrane is

(4)

in which ~. is the specific weight of the liquid and ~'o the specific weight of the membrane.
Referring to the non-linear deflection theory of thin plates (Timoshenko and Woinowsky­
Krieger. 1959; Chia, J 980), we may. in a parallel manner, put the differential equation for
the membrane equilibrium as
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dTr I
-d + -(Tr - To) = 0

r r

d2
11' I dw

T,- +Too- - +q(r) = 0
dr 2 r dr

or

dT
r

I _ _
-d + -(Tr - To) = 0

r r

As for the membrane boundary conditions, they are

r = a: u = 00 II' = O.

Furthermore, all quantities concerned must be finite at r = O.
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(5a)

(5b)

(6)

STRESS FUNCTION AND NON-D1MENSIONALIZATION OF EQUATIONS

As in the linear theory of thin plates, introducing a stress function to simplify the
structure of equations is desirable. By expressing internal forces Tn To in terms of a stress
function ¢(r) :

_ I d¢
T =~-

r r dr'
(7)

equilibrium eqn (5a) is satisfied identically, and eqn (5b) becomes

(8a)

To obtain further equations for the determination of 11' and ¢, one must consider the
compatibility of internal forces. From strain expressions (la, b), we obtain the condition
of compatibility between Gr and GO:

d I (dW)2
G,- dr(rGo) =:2 dr .

After invoking relation (3) and definition (7), this condition is equivalent to

(1 +V)(~ d¢ _ d2¢)_r~ (d
2
¢ _ ~ d¢) = Et (dW)2

r dr dr 2 dr dr 2 r dr 2 dr

or, after differentiation,

(9)

(8b)

Equations (8a, b) are the two coupled non-linear differential equations for the two basic
field variables, wand ¢. of the problem.
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Correspondingly. by means of eqns (lb). (3) and (7), boundary conditions (6) are
rewritten as

r = a: 11' = O. (10)

In what follows. for conciseness of treatment, non-dimensional variables IV = wla,
Ij; = ¢/(Eta2

) as well as the non-dimensional coordinate p = ria are used, With these new
variables and coordinates. eqns (Sa. b) and boundary conditions (10) become

(lla)

(II b)

(12a)

p = I:
d2 1j; \' dlj;
----- =0

dp 2 P dp ,
(12b)

where [3 = I'ota/To is the parameter for membrane weight. ;, = i'a2/To is the parameter for liquid
load and I: = EtTo is the parameter which indicates the degree of non-linearity in eqn (11 b).

'v10DIFIED ITERATIO'< TECHT"IQUE

To search for an acceptable approximate solution for the two coupled nonlinear
differential eqns (lla. b) by an iteration scheme. a linear counterpart of eqn (11 b)

d')1 I dll'
+ -[3

dp' pdp

is first examined, From eqn (13) and the boundary condition (l2a), we take

II = 11'o(l- p 2)

(13)

(14)

as the first approximate form for the membrane deflection. with \1'0 representing the central
deflection, We note that in conducting the subsequent iteration, 11'0 is seen as an un­
determined parameter. to which a proper value will be assigned later by consideration of
convergence, It is a modified and more effective iteration strategy.

Substituting eqn (14) into the right-hand side ofeqn (1Ia) and integrating the equation.
in conjunction with boundary condition (12b) for Ij;, yields

(15)

Then, after introducing eqns (14) and (15) into the right-hand side of eqn (lib) and
integrating the equation, together with boundary condition (12a), for II' again, the second
approximation for the membrane deflection is found to be

-,* f3 2 ;,11'0 2 4 . -"l 3- v 2 I 4 ]11 = -(l-p )+--(3-4p +p l+wo---(p -I)--(p -1)
4 16 4(1-v) S

(16)
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11 i. _ .:I - \' _,
a: = - - 1\'0 + -C:W(J

4 4 4( I ~ r)
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(17)

(18)

This expression comprises the contribution of all the non-linear terms in eqn (II b), and as
a second approximation, we may expect it to give a fundamental description of the system
behavior.

To finish the solution, parameter \1 0 , which acts as an adjustable factor in the iteration,
is decided by setting

(19)

which is an expedient consideration for consistency (or convergency). We note that the
preceding setting (19) is only one of many ways of determining \T'o. From eqns (16) and
(19), the governing equation for \T'o is

- Ii .:Ii. - r 5- \' l-'
It'" = 4 + 16 11

'0 -DL8(1 ~~) Wi) (20)

which also stands for the non-linear load~deflection relation being sought.
Continuing the process in a similar manner gives the second approximation for t/J, i.e.

1 , I '~
t/J* = l('oP'- 16a~p

in which

(21 )

.:I-r ,5-\' 7-r,
('Ii = -~ (/~ + -~ --- a"a~ +~-- -a44(1-\')' 3(1 -\,)' 6(1-v)

and the third approximation for IT. i.e.

where

(23)
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Seeing that expression (17) has already comprised the contribution of all the non-linear
terms in eqns (1 la, b), and that expression (22) is still an improvement on eqn (16), we
may stop here and expect eqn (22) to give a fundamental description of the system behavior.

To finish the solution, parameter fiJo, which acts as an adjustable factor in the iteration,
is decided by setting

11'*(0) = 11'**(0), (24)

which is an expedient consideration for consistency (or convergency), From eqns (16) and
(22), the governing equation for 11'0 is then

(25)

The central deflection of the membrane 11'* (0) [or the same, 11'** (0)] is of most interest.
After having determined 11'0 from eqn (25), we finally have

_,* _ ~ 3;, _, _ 5- V -,3
\t (0) - 4 + 1 Ito 1 )Glt o .6 8( -v

(26)

We note that by following the process in the above manner, higher orders of approxi­
mation can be similarly obtained.

DISCUSSION AND CONCLUSION

Based on the foregoing results, four cases which are linked to the four different levels
of problem handling can be examined successively.

(1) G = 0, f3 = 0 (i.e. using linear theory and neglecting the membrane weight), By
referring to eqns (18) and (23), it is seen that in this case

The third approximation (25) degenerates to

3._ (3 1 1)2_
T6 1.H'o = 64 - 64 + 576 A Wo

which yields

\1'0 = 0 [and therefore 11'*(0) = 0]

or

11'0 unconstrained [and 11'*(0) unconstrained] for A = 5.68.

(27)

(28)

(29)

(30)
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Prestretched circular membrane

a2

A =rT' parameter for liquid load
o

A' =5.68, the eigenvalue

(j)

CD

Wo ,nondimensional membrane deflection
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Fig. 2. Relations between membrane deflection and liquid load for four different cases.

This case gives unreasonable responses, with '1'(0) unconstrained [eqn (30)], A* = 5.68 being
the eigenvalue and '1'0 = 0 [eqn (29)]. These responses are shown in Fig. 2 by lines 1.

We note that in the present case, the second approximation (20) for ~I'o yields 11'0 = 0
[hence 11'*(0) = 0], or ,1'0 unconstrained [and hence \\'*(0) unconstrained] for }.* = 5,33.

(2) I: = 0, f3 of. 0 (using linear theory and taking into account the membrane weight).
Now, as f3 of. 0, we have from eqns (18) and (23)

I. I.,
h, = - 64 /.(3- 64 r 11'0,

hh = hs = O.

The only solution for eqn (25) is

_ 3(3
II'" = -------'--(1-9) .

12- 9 ;.

Therefore eqn (26) yields

. ( 31J
fJ 3/. (._----

11'*(0) = -.. +- 19
4 16 1"'---

,~ 9

(31)

(32)

(33)

This solution is plotted in Fig. 2 as line 2 (with (3 = 0.004). It is seen that non-zero deflection
exists, which increases with the increasing ofload parameter A, and that very large deflection
will happen when A approaches the threshold value A* (5.68); but, as is known, linear



552 [) Chen and S, Cheng

theory is not applicable to analysis of large deflection, so line 2 can only have some meaning
for i being relatively small (i.e. for i. « i*).

In this case, the second approximation (20) yields

. fJ ( 3i.)\\' = 1-··
,I 4 16 (34)

and ti"*(O) = Ii"o [eqn (11))]. When this solution is plotted, it is very close to line 2 (Fig. 2)
and hence the same conclusion can be made with i* = 5.33.

(3) (; -:f 0, fi = 0 (non-linear theory and neglecting the membrane weight). In this case
eqn (25) is too complicated for analytical treatment. From eqns (18) and (23), it is seen
that this case has a trivial solution. Ii"" = O. To search for any non-trivial solution, we put
the third approximation (25) in the form

(35)

then adopt a numerical iteration procedure. By doing so it is found that a non-trivial
solution exists only for i. > i* (5.68) as shown in Fig. 2 by line 3 (with (; = 1000, v = 0.3).
This bifurcated solution (with bifurcation point i. *) suggests that given Ie > Ie *, even if the
membrane weight is absent. a limited deflection may still occur. It is the same prediction as
shown by Kerr and Coffin's (1990) non-linear analysis for a membrane strip. Thus, for
problems of this type, a linear formulation is not suitable.

In this case the second approximation (20) yields

\\11 = 0

or

I 16/- I II '
I (1~8)[ (5 - \') (1- \')] I

when i. > i.* = 5.33. (36)

Obviously, here the non-trivial \\(1 constitutes a bifurcated solution and the bifurcation
point is exactly i* (5.33). When the i \\'1) curve based on eqn (36) is plotted, it coincides
again as seen in the preceding case 2. with line 3, the third approximation, very well.

(4) I: -:f O. f3 -:f 0 (non-linear theory and considering the effect of membrane weight).
This is the case of most interest. the case which gives a more realistic picture. The same
numerical procedure as in case 3 can he used for the solution of eqn (25). To observe the
i"'Ii"*(O) relation so obtained. two typical curves, 4 (I: = 1000, \' = 0.3, fJ = 0.004) and 4'
(<: = 1000, \' = 0.3. fJ = 0.01). are drawn in Fig. 2. Inspecting curve 4, we see that by
considering both the membrane weight and the non-linear character of the system, curve 4
bridges the gap between 2 and 3 as may be expected, and that the aforementioned eigenvalue
(or bifurcation point) i* seems to he losing its specific meaning as there is no sudden change
or ·'threshold" happening on the curve. It is also seen that the difference between 4 and 4'
caused by the two distinct but small values of fj is significant only for the initial stage of
the membrane deflection and that with an increase of load parameter i" this difference
becomes smaller and smaller.

In the present case, the second approximation (20) may be written as

/. = (37)

When this i.-I\·o relation is plotted. It IS found that the difference between the curves based
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on eqn (25) and the relation (37) is negligibly small. Hence, only the two curves 4 and 4'
based on eqn (25) are plotted in Fig. 2.

With these results, we come to the following conclusions.

(I) For describing the exact behavior of a ponding system, non-linear (large deflection)
analysis is necessary.

(2) Owing to the small weight of the membrane, ponding deflection will develop
gradually with increasing load parameter. There is a stage with greatest change rate, but
no sudden change happens.

(3) Such a small weight actually has no effect on the possible large deflection.
(4) The present iteration technique yields fast convergence and has the simplicity and

effectiveness for solving non-linear membrane problems. It is well suited for practical usage.
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